Adaptive processing techniques based on hidden Markov models for characterizing very small channel currents buried in noise and deterministic interferences.

نویسندگان

  • S H Chung
  • V Krishnamurthy
  • J B Moore
چکیده

Techniques for characterizing very small single-channel currents buried in background noise are described and tested on simulated data to give confidence when applied to real data. Single channel currents are represented as a discrete-time, finite-state, homogeneous, Markov process, and the noise that obscures the signal is assumed to be white and Gaussian. The various signal model parameters, such as the Markov state levels and transition probabilities, are unknown. In addition to white Gaussian noise, the signal can be corrupted by deterministic interferences of known form but unknown parameters, such as the sinusoidal disturbance stemming from AC interference and a drift of the base line owing to a slow development of liquid-junction potentials. To characterize the signal buried in such stochastic and deterministic interferences, the problem is first formulated in the framework of a Hidden Markov Model and then the Expectation Maximization algorithm is applied to obtain the maximum likelihood estimates of the model parameters (state levels, transition probabilities), signals, and the parameters of the deterministic disturbances. Using fictitious channel currents embedded in the idealized noise, we first show that the signal processing technique is capable of characterizing the signal characteristics quite accurately even when the amplitude of currents is as small as 5-10 fA. The statistics of the signal estimated from the processing technique include the amplitude, mean open and closed duration, open-time and closed-time histograms, probability of dwell-time and the transition probability matrix. With a periodic interference composed, for example, of 50 Hz and 100 Hz components, or a linear drift of the baseline added to the segment containing channel currents and white noise, the parameters of the deterministic interference, such as the amplitude and phase of the sinusoidal wave, or the rate of linear drift, as well as all the relevant statistics of the signal, are accurately estimated with the algorithm we propose. Also, if the frequencies of the periodic interference are unknown, they can be accurately estimated. Finally, we provide a technique by which channel currents originating from the sum of two or more independent single channels are decomposed so that each process can be separately characterized. This process is also formulated as a Hidden Markov Model problem and solved by applying the Expectation Maximization algorithm. The scheme relies on the fact that the transition matrix of the summed Markov process can be construed as a tensor product of the transition matrices of individual processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying hidden Markov models to the analysis of single ion channel activity.

Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algo...

متن کامل

Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models.

Techniques for extracting small, single channel ion currents from background noise are described and tested. It is assumed that single channel currents are generated by a first-order, finite-state, discrete-time, Markov process to which is added 'white' background noise from the recording apparatus (electrode, amplifiers, etc). Given the observations and the statistics of the background noise, ...

متن کامل

Models for Extracting Small Channel Currents

The measurement of ionic currents flowing through single channels in cell membranes has been made possible by the giga-seal patch-clamp technique (Neher and Sakmann, 1976; Hamill et al., 1981). A tight seal between the rim of the electrode tip and the cell membrane drastically reduces the leakage current and extraneous background noise, enabling the resolution of the discrete changes in conduct...

متن کامل

Speech enhancement based on hidden Markov model using sparse code shrinkage

This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...

متن کامل

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 334 1271  شماره 

صفحات  -

تاریخ انتشار 1991